
15/07/2021 Scheduling - ByPic

www.byvac.com/gpeasy/index.php/Scheduling 1/3

(1) Introduction (2) Traffic Lights IoT WiFi Advanced Topics Scheduling Plugin - Running C How To

Scheduling / Tasking
Alternatives

Scheduling was originally left out of the language for a variety of reasons, see the Alternatives for those
reasons. With the advent of the use of the WiFi module it is now more relevant to be able to run
something in the background and still have the 'ok' prompt. From version 2.3 serial ..71 scheduling is
included.

As this is really more like multi tasking the prefix to the commands is 'task'.

Advantages:

There is no context switching as needed in interrupts so making the process very efficient
Small individual programs can be written making programming much easier
Timed events much easier to implement
Actionable (buttons) events much easier to implement
Period is in mS, maximum value 4,294,967,295 (49 days)

Limitations:

Priority has a value from 1 to 50
Maximum number of task entries is 20, may be limited also by memory
Care must be taken not to take up too much CPU time
Task loop may not produce accurate timings
Will only run when the ok prompt is visible ** See function taskup()
Uses Timer 1 *

* Initially the core CPU timer was used. However using the implementation of this timer on the PIC32 it
was not possible to derive a stable timer. It just kept stopping at random and so the timing is now
provided by TIMER 1

Functions:

taskadd("text",priority,period,action)

Adds or creates a task slot. "text" can be any valid instruction, function or command. In other words
anything that can be entered to the 'ok' prompt without causing an error.

Action = 0 This is a one off event, after the event fires the task slot will be deleted.

Action = 1 This is a continuous task activity, the text will be carried out at every set period.

Action = 2 Pauses the activity, use with taskmod() to stop and start the individual task.

Example:

x = taskadd("print \"Hello\"",1,5000,1) // prints "Hello" every 5 seconds

Note that x will contain the slot number, this can be used for later modifying or deleting the task entry. If
negative then that indicates an error.

Example:

Flash an LED, assume that LED(1) turns the led on and LED(0) turns it off

function do_flash()
 LED(1) // turn the led on

 taskadd("LED(0)",5,50,0) // see text below
 endf

slotL1 = taskadd("do_flash()",2,5000,1)

ByPic

High Speed Development

HomeHome DocumentationDocumentation TutorialsTutorials LibraryLibrary ProjectsProjects DownloadsDownloads AboutAbout

 Print PDF

Search

Search
(1) Introduction
(2) Traffic Lights
IoT WiFi
Advanced Topics
Scheduling
Plugin - Running C
How To

External Links

Creative Science Centre

http://www.byvac.com/gpeasy/index.php/%281%29_Introduction
http://www.byvac.com/gpeasy/index.php/%282%29_Traffic_Lights
http://www.byvac.com/gpeasy/index.php/IoT_WiFi
http://www.byvac.com/gpeasy/index.php/Advanced_Topics
http://www.byvac.com/gpeasy/index.php/Scheduling
http://www.byvac.com/gpeasy/index.php/Plugin_-_Running_C
http://www.byvac.com/gpeasy/index.php/How_To
http://www.byvac.com/index.php/Scheduling_Archive
http://www.byvac.com/index.php/
http://www.byvac.com/
http://www.byvac.com/gpeasy/
http://www.byvac.com/gpeasy/index.php/Documentation
http://www.byvac.com/gpeasy/index.php/Tutorials
http://www.byvac.com/gpeasy/index.php/Library
http://www.byvac.com/gpeasy/index.php/Projects
http://www.byvac.com/gpeasy/index.php/Downloads
http://www.byvac.com/gpeasy/index.php/About
http://www.printfriendly.com/
http://www.byvac.com/gpeasy/index.php/%281%29_Introduction
http://www.byvac.com/gpeasy/index.php/%282%29_Traffic_Lights
http://www.byvac.com/gpeasy/index.php/IoT_WiFi
http://www.byvac.com/gpeasy/index.php/Advanced_Topics
http://www.byvac.com/gpeasy/index.php/Scheduling
http://www.byvac.com/gpeasy/index.php/Plugin_-_Running_C
http://www.byvac.com/gpeasy/index.php/How_To
http://www.creative-science.org.uk/main.html

15/07/2021 Scheduling - ByPic

www.byvac.com/gpeasy/index.php/Scheduling 2/3

In the above the 'do_flash()' function is scheduled to be called every 5 seconds with a priority of 2 and an
action of 1 that means it will be called every 5 seconds continuously. When function do_flash() is called it
turns on the led and a task is created to tune off the led 50mS after. There are some IMPORTANT points
to note:

1. do_flash() can be called at any time, it does not need to be called by another task, calling will
simply flash the led.

2. The function is non-blocking, it does not hold up the processor as it would if we used a wait()
function

3. The action of 0 will mean that when the task inside do_flash() has been executed it will be deleted
from the task list.

4. The led can be stopped from flashing by using taskmod(slotL1,3,2) ans started by
taskmod(slotL1,3,1). This sets the action of task slotL1 to 2 (paused) or 1 (continuous)

tasksee()

Displays the task entries in priority order.

[slot number] [period] [(action)] [health] Task to run

Slot number: This is the task slot and can be referred to when modifying the task, see taskmod() below.
The value is also returned when creating the task with taskadd().

Period: This is the specified task period in mS

(Action): This can have 3 possible values, 0 is one off and will be removed from the list when it is fired.
1 is continuous and will therefor be running. 2 is paused.

[Health]: Ideally this should be 0. If it is not zero then it means that it has missed that number of
requested periods. To explain further, if health is not 0 then it means that when the task manager added
the next period to the current period it was still less than the current time and so the period is added
again and health incremented until the next period is in the future.

It may not matter that the health is not 0. To reduce the health count either increase the task time or
reduce the time that the function takes (make the function smaller).

taskmod(slot,n,x)

Modifies an existing task. It is not possible to modify the text just the other items.

slot is the slot number as found from tasksee(). In general when using taskadd() the next available slot
will be used, however if there is a deleted slot then that will be used first and so tasksee() should be used
first.

n = 1 to modify the priority
n = 2 to modify the period
n = 3 to modify the action

Example

taskmod(0,2,10000) // modify slot period to 10 seconds

taskdel(slot)

Deletes an individual taskedule using the slot number.

taskclr()

Clears all of the taskedule entries

taskctl(n)

Task control. This enables or disables the scheduler.

15/07/2021 Scheduling - ByPic

www.byvac.com/gpeasy/index.php/Scheduling 3/3

n = 0 // stops all task activities

n = 1 // starts all activities, the task activities will be activated if their time is up

n = 2 // re-starts all activities. The task items will be started from the beginning

tick()

Returns the value of the CPU timer in mS. The timer is set to 0 on reset.

taskup()

Task update. A task will only normally run when ByPic is doing nothing, i.e. waiting for user input. Whole
programs can be written with just using tasks in the background and if tasks are used this is probably the
best way to do it.

It may be that for some reason a loop is required for example:

function x()
 while 1
 .. do code
 wend
endf

In the above function no tasks would be executed. If tasks are also required then use taskup() within the
loop, this is similar to processMessages in Windows:

function x()
 while 1
 taskup()
 .. do code
 wend
endf

Tasks will now be processed within the loop. A word of warning though, taskup() needs to save the
context (as is also required for an interrupt) before running and this is a reasonable overhead each time
it is called.

Timing

When a period is selected for a scheduled event, the time is checked against the processor tick and so
the time is accurate. However it is only checked when taskchk() is run and as this is not called (cannot be
called) in much less then 1mS intervals, then the actual period may be slightly larger than the period
selected which will depend on when taskchk() is called. The period will never be smaller.

Real World Examples

The scenario is that we have a gas boiler, the start up sequence is:

1. purge the boiler which involves turning on a fan so that any residual gas is removed (10 sec)
2. start the igniter (5 sec)
3. turn on the gas
4. Turn off the igniter 5 seconds after the gas has lit

function start_up()
 purge_on()

 taskadd("purge_off()",1,10000,0) // one off
 taskadd("ignite_on()",1,10000,0)

 taskadd("gas_on()",1,15000,0)
 ... check we have ignition and fail if not

 taskadd("ignite_off(),1,20000,0)
 endf

Obviously for an actual example there will be safety checks but this shows how a sequence can be formed
by using a one off taskedule. The function start_up() will return immediately and so other inputs can be
checked whilst this procedure is taking place - an emergency stop button for example.

Site Map Login

http://www.byvac.com/gpeasy/index.php/Site_Map
http://www.byvac.com/gpeasy/index.php/Admin?file=Scheduling

